(暫定)仕様書

品名

汎用測距センサ用IC

SRX106AS3

仕様書番号: 2305-2.

受領印欄		

2.21.2.2						
シリンクス株式会社						
承	認	作	成			

作成 2023年5月30日 発行 2023年5月30日

[目 次]

概要	· · · P. 2
絶対最大定格	· · · P. 2
端子内容	· · · P. 3
動作モード	· · · P. 4
動作タイミング	· · · P. 5
ブロック図、標準接続図	· · · P. 9
電気的特性	· · · P. 10
入出力特性例	· · · P. 12
PAD座標図	· · · P. 16
SSOP16 外形図	· · · P. 17
SSOP16 組立図	· · · P. 18
入出力等価回路図	· · · P. 19
SRX106 → SRX106AS3 変更点	· · · P. 22
梱包仕様	· · · P.
追記	· · · P.
改定内容	· • • P.

・集積回路においては、あらゆるモードの偶発的な故障の可能性を回避することは不可能です。 機器の設計においては、本集積回路のあらゆる偶発的な故障の可能性を考慮し、万一の故障が機器の 発火あるいは破裂などを引き起こし、人体、財産などに対して危害を与える原因となる事のないように 機器設計、生産者殿の責任において対策を行って下さい。

・本集積回路は、その装置の故障が人命や財産等に重大な損失を与えるような、極めて高い信頼性が 要求される装置に使用するという目的に合致した設計とはなっておりません。

[概要]

本IC はPSD 素子を入力素子とした3角測量式の汎用測距装置のためのIC で、赤外発光ダイオードの発光電流制御回路、反射光を受光して増幅するヘッドアンプ、定常光電流をアナログ的にメモリし除去するための回路、増幅した電流を対数圧縮した後にPSDの2つの出力を演算する回路、演算した結果を10 ビットのデジタル値に変換するアナログデジタル変換回路、この値をアナログ値に変換するための9 ビットのデジタルアナログ変換回路、アナログ出力電圧をシフトして調整するための調整回路、ヒステリシスを持たせたアナログコンパレータ回路、シーケンスおよびI/Oを制御するためのロジック回路、それとレギュレータから構成されています。IRED の発光は8回または32回連続して行われ、その平均が出力されますが、どの発光回数にするかは設定端子の状態で選択できます。また通常の1/6の電力で8回発光し、反射光量を判定してその値がある値を規定回数超えた場合に対象物があると判断して、本測距モードに入る機能を持ったSAVEモードを有しています。また従来外付けであったアナログデジタル変換回路用積分コンデンサを内蔵しています。

•型名 : SRX106AS3

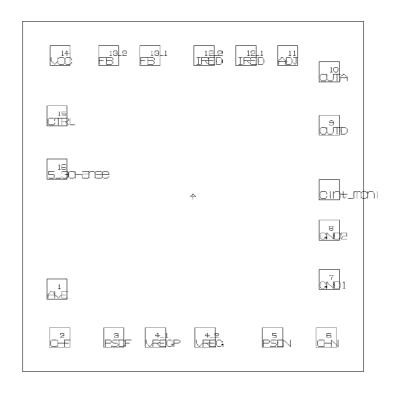
・機能:能動型光学式距離測定

・材料・構造 : シリコンモノリシック / Bi-CMOS プロセス

・パッケージの場合 : 16pinSSOP

・ 耐放射線設計の有無:無

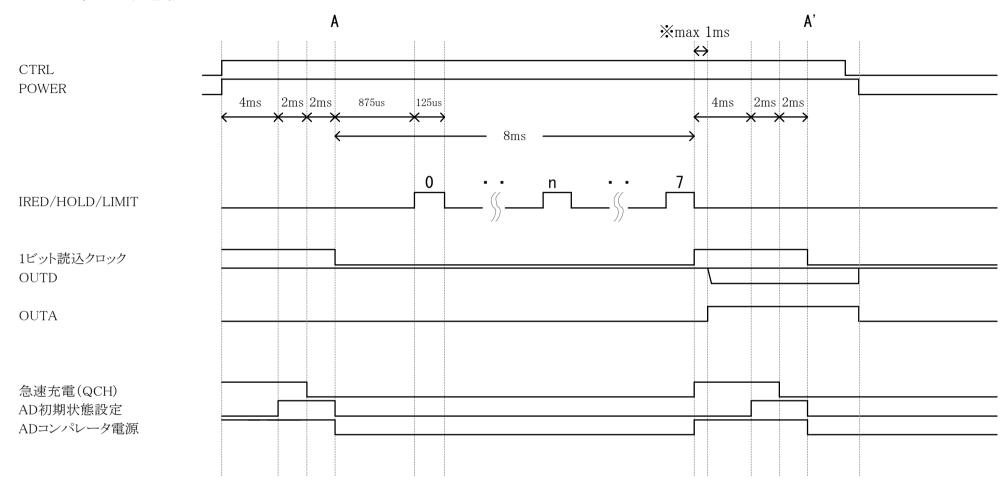
[絶 対 最 大 定 格]


項目	記号	定格	単 位	備 考
電源電圧	VCC	$-0.3 \sim 5.5$	V	
許容損失	Pd	-	mW	
入力端子電圧	Vin1	$-0.3 \sim VCC + 0.3$	V	AVE, 5_3change, CTRL, ADJ
入力端子電圧	Vin2	$-0.3 \sim VREG+0.3$	V	PSDF, CHF, PSDN, CHN
出力端子電圧	BVoc1	$-0.3 \sim VCC + 0.3$	V	VREG, OUTA, IRED, FB
出力端子電圧	BVoc2	$-0.3 \sim 5.5$	V	OUTD
動作温度	Topr	$-25 \sim +70$	$^{\circ}\!\mathbb{C}$	(注1)
特性保証温度	Tgur	$-15 \sim +50$	$^{\circ}\mathbb{C}$	
保存温度	Tstg	$-40 \sim +150$	$^{\circ}\!\mathbb{C}$	16pinSSOP の場合

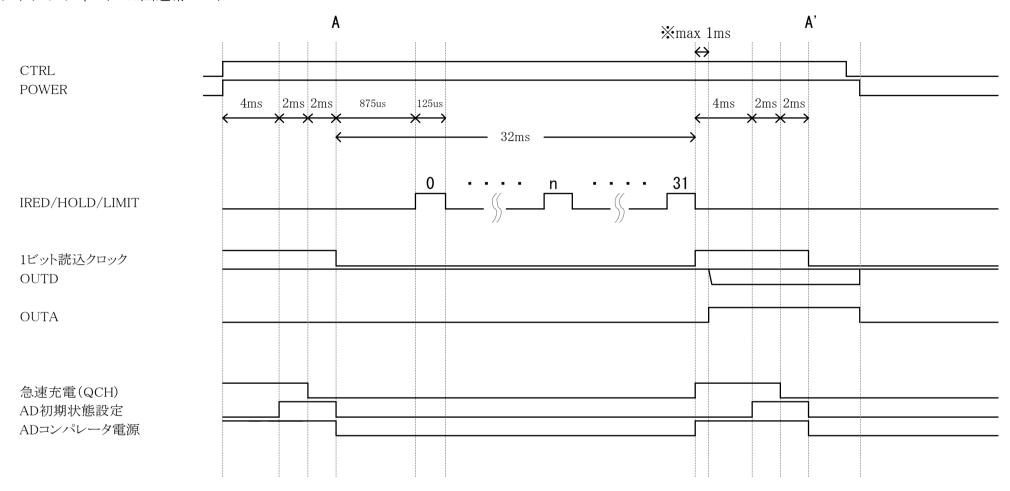
(注1) 動作温度範囲は、定性的に動作する温度範囲を示し、特性を保証するものではありません。

[端子内容]

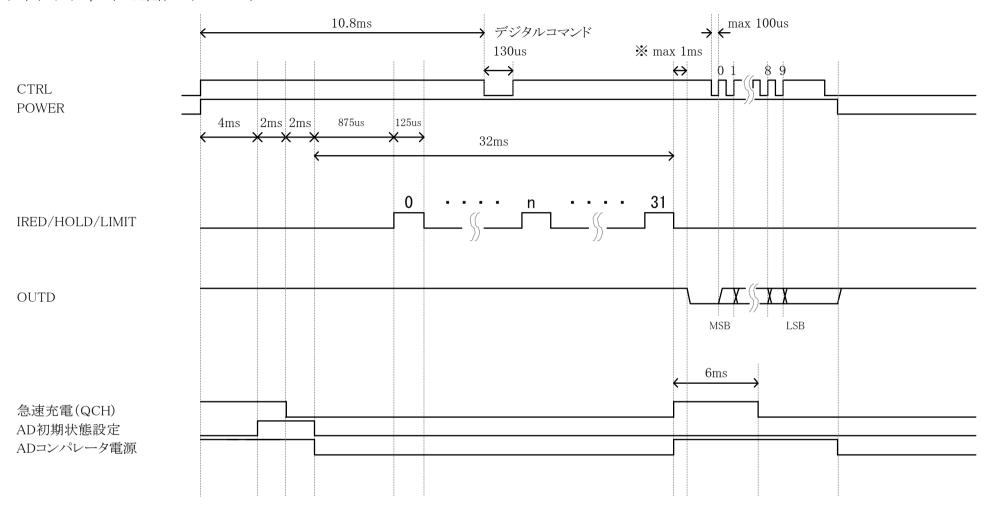
パッド番号	記号	端子内容
1	AVE	発光繰り返し回数選択
		GNDに接続で8回、openで32回、VCCに接続でSAVEモード
2	CHF	ホールドコンデンサF
3	PSDF	PSD入力F(遠側)
4_1、4_2	VREGP、VREG	安定化電源
5	PSDN	PSD入力N(近側)
6	CHN	ホールドコンデンサN
7	GND1	グランド1
8	GND2	グランド2
9	OUTD	デジタルデータ出力
		1bitでの出力時は、遠結果でL出力、近結果でH出力
		10bitシリアルデータでの出力は、MSB 1'st、bitを反転させて数値化
10	OUTA	アナログデータ出力
11	ADJ	出力レベルアジャスト用抵抗
12_1、12_2	IRED	赤外発光ダイオード出力
13_1、13_2	FB	IRED電流制御フィードバック
14	VCC	電源端子
15	CTRL	コントロール入力端子
16	5_3change	最大出力電圧5Vモード/3Vモード切替え
		VCCに接続で5Vモード、GNDに接続で3Vモード


(Cint_moni はワイヤを張りません。チップの開発、ウェハテスト用。)

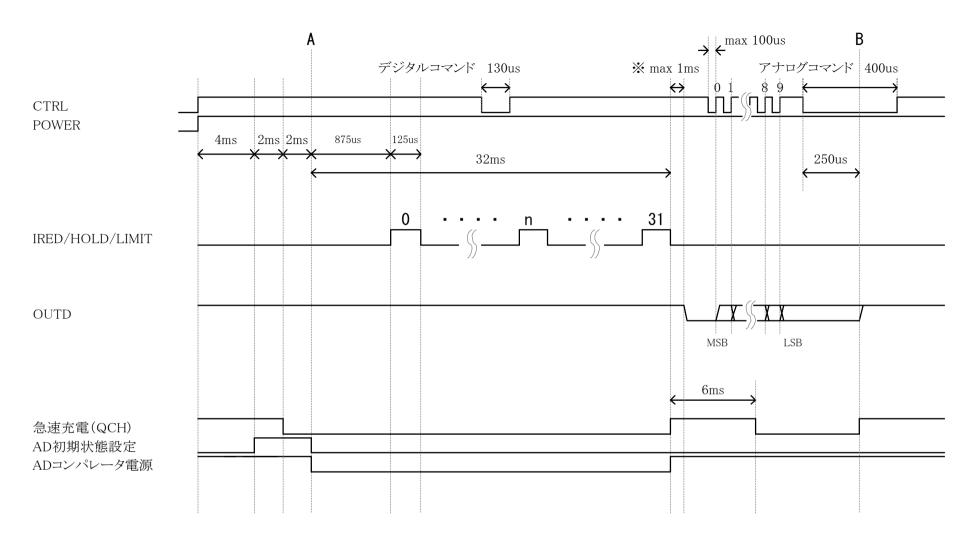
[動作モード]


動作モード	発光回数	アナログ出力(OUTA端子)	デジタル出力(OUTD端子)	AVE端子設定	備考
8回通常モード	8回	有効	有効 (1bit)	GNDへ接続	
8回SAVEモード	8回	有効	有効 (1bit)	VCCへ接続	通常の1/6の電力で8回発光し、反射光量を測定して その値がある値を規定回数超えた場合に 対象物があると判断し 本測距モード= 8回通常モードに移行します。 最初に得られたデータは破棄し、その22ms後に得られるデータから有効です。 ウェハテストは省略してます。 (SSOP16以外での出荷形態では 8回SAVEモードの保証は無し。)
32回通常モード	32回	有効	有効 (1bit)	オープン	
32回デジタルモード	32回		有効 (10bitシリアルデータ)	オープン	CTRL端子にデジタルコマンドを送ることで このモードに移行します。 (動作タイミング図参照) そして CTRL端子に読出クロックを与えて 10bitシリアルデータを読み出します。 ウェハテストを省略してます。 (SSOP16以外での出荷形態では 32回デジタルモードの保証は無し。)

タイミングチャート 8回通常モード

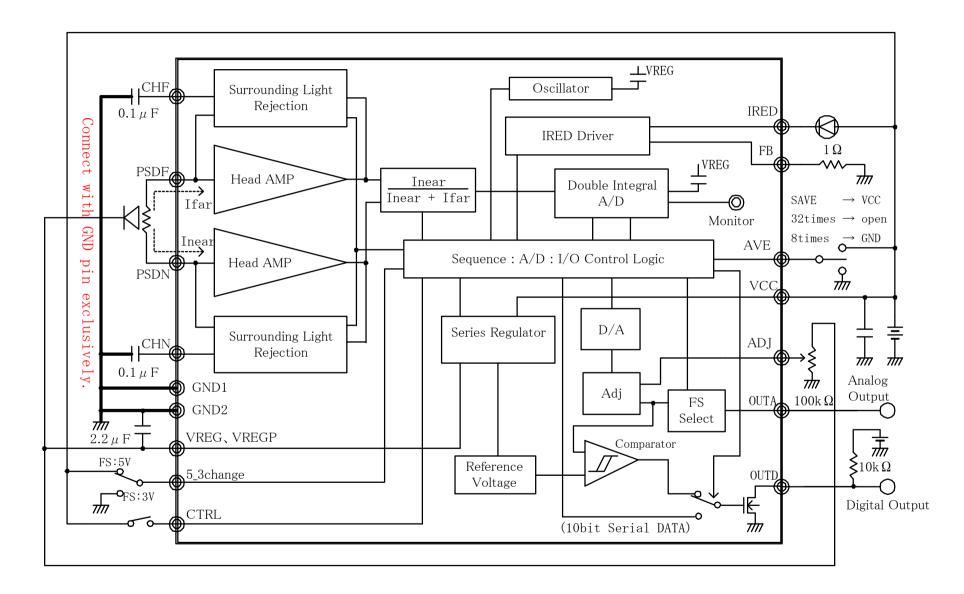

最初の1回の測距が終了して続いて2回目の測距動作に入ります。 A'点がA点に相当します。 ここでは時間軸 フリーハンドで書いてます。

タイミングチャート 32回通常モード



最初の1回の測距が終了して続いて2回目の測距動作に入ります。 A'点がA点に相当します。 ここでは時間軸 フリーハンドで書いてます。

タイミングチャート 32回デジタルモード


ここでは時間軸フリーハンドで書いてます。

Bから32回通常モードになります。 ここでは時間軸フリーハンドで書いてます。

32回デジタルモードで連続測距する場合は、 Dmodeコマンド \rightarrow (1回目測距) \rightarrow Amodeコマンド \rightarrow (1回目測距) \rightarrow Amodeコマンド \rightarrow (3回目測距) \rightarrow … というようにシーケンスを組立てます。

[Block diagram / Standard circuit diagram]

[電気的特性]

 $Ta=25^{\circ}C \ VCC=2.9V, 5.5V$

					Ta=25°C	, VCC—	<u> </u>	V	
No.	項	目	記号	条件		許容値		単位	
					Min	Тур	Max		
1. 信	1. 電源電流								
1	オフ状態		Ip1				1	μΑ	
2	急速充放電	充電	Ip2		1.4	2.1	3.1	mA	
3	状態	放電	Ip3		1.2	1.9	2.9	mA	
4		充電	Ip4		1.1	1.7	2.6	mA	
5	状態	放電	Ip5		1.0	1.5	2.3	mA	
6	発光時		Ip6		1.0	1.6	3.1	mA	
2. 3	羟振回路		_						
1	発振周波数		fOSC		102	128	160	KHz	
2	発振周波数電	圧変動	dfOSCV	VCC=2.9V~5.5Vに対して	-1.0		1.0	%	
3	発振周波数温	度変動	dfOSCT	-15℃~50℃において	-5.0		5.0	%	
3. <	ヘッドアンプ / 詞	調整回路	•				-		
1	入力電圧		Vin	(VREGに対する値)	-675	-635	-595	mV	
2	最大信号光電	流	ISmx		5.0			μΑ	
3	CH電圧1		Vch1	Isd(定常光)=0 μ A	385	490	595	mV	
4	CH電圧2		Vch2	Isd=1 μ A	615	770	925	mV	
5	CH電圧3		Vch3	Isd=24 μ A	1,565	2,320	2,850	mV	
4. Z	トールドコンデン	ンサー充放電管	電流						
1	CH急速充電管	電流	Ich1		-202	-118	-48	μΑ	
2	CH急速放電管	電流	Ich2		28	77	142	μΑ	
3	CH定常充電質	電流	Ich3		-3.02	-1.50	-0.48	μΑ	
4	CH定常放電管	電流	Ich4		0.48	1.50	3.02	μΑ	
5. 0	TRL制御端子	•			1	ı			
1	オン時端子電	流	Ictrl	VCC=5.5V	7	22	39	μΑ	
2	オン電圧		Vctrlon		0.75			VCC	
3	オフ電圧		Vctrloff				0.25	VCC	
6. AVE制御端子									
1	AVE端子電流	H	Iaveh	VCC=5.5V	23	46	92	μΑ	
2	AVE端子電流	EL	Iavel	II.	-92	-44	-23	μΑ	
7.	5_3change制御	郭端子			, , , , , , , , , , , , , , , , , , , 				
1	5_3change端子	子電流H	I5_3changeh	VCC=5.5V	23	46	92	μΑ	
2	5_3change端子	产電流L	I5_3changel	II	-92	-44	-23	μΑ	

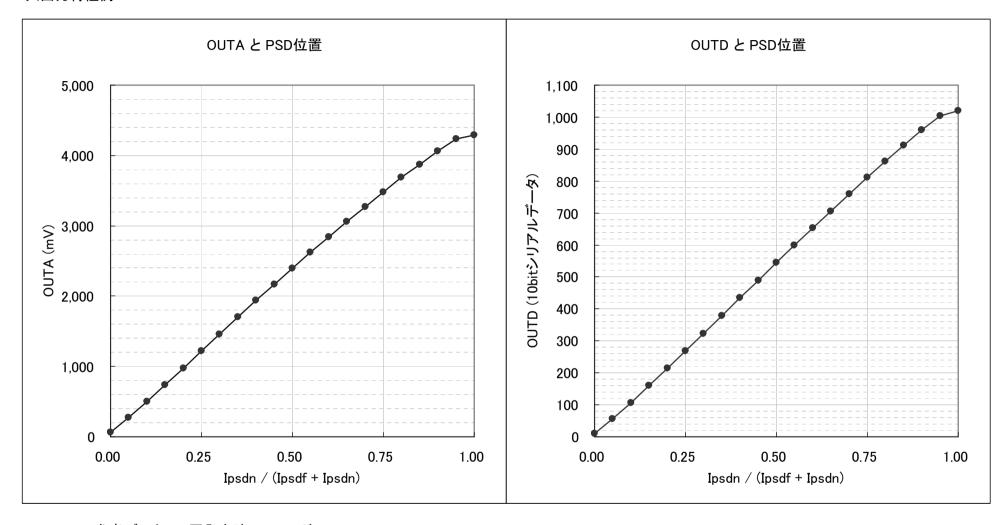
No.	項目	記号	条件		許容値		単位
				Min	Тур	Max	
8. I	RED発光制御回路						
1	FB端子電圧	VFB	FB抵抗值=330Ω、VCC=5.5V、WT時	303	343	383	mV
2	FB制御電圧電圧変動	dVFBV				5	%
3	FB制御電圧温度変動	dVFBT	-15℃~50℃、T比例に対して	-10		10	%
4	IRED最大出力電流	IiOUT	設計保証	500			mA
5	IRED端子リーク電流	IiLEAK				10	μΑ
9.	1ビット出力端子						
1	アナログ出力換算弁別値	THvod	5Vモード	1,120	1,200	1,280	mV
2	弁別値ヒステリシス	HIvod		15	40	65	mV
3	出力端子リーク電流	Ioutdlk				1.0	μΑ
4	出力端子飽和電圧	Voutdsat	Io= 0.5mA			200	mV
10.	アナログ出力端子						
1	入出力特性電圧(※1)	Vao5cf		41	47	53	mV/%
2	入出力特性電圧(※2)	Vao5nc		41	47	53	mV/%
3	シフト電圧比 (※3)	Vshift		1.50	1.65	1.80	
4	出力電圧(5Vモード)	Vouta_5V	8回発光、50%位置、Vadj=300mV	1,626	1,911	2,196	mV
5	出力電圧(3Vモード)	Vouta_3V	11	1,312	1,557	1,802	mV
6	出力電流(ソース側)	Iouta-				-1	mA
7	出力電流(シンク側)	Iouta+		5			μΑ
8	最大出力電圧	VaoMax	VCC=5.5V、5Vモード	3,600			mV
9	最小出力電圧	VaoMin	JJ			200	mV
10	出力電圧a(5Vモード)	Vouta_5Va	8回発光、50%位置、Vadj=500mV	1,321	1,581	1,841	mV
11	出力電圧b(5Vモード)	Vouta_5Vb	8回発光、50%位置、Vadj=1,100mV	264	524	784	mV
12	シフト電圧比a (※4)	Vshifta		1.60	1.76	1.92	
11.	安定化電源回路	-				,	
1	出力電圧	VoutS	VCC=5.5V	2.55	2.70	2.85	V
2	出力電流	IoutS	外部出力余裕	2.4			mA
3	対入力安定度	dVoS1	VCC=2.9V~5.5Vに対して			30	mV
4	負荷安定度	dVoS2	IoutS=0∼2.4mA		2	30	mV
5	出力電圧温度係数	dVoS/t			0.0	±1.0	mV/℃
6	入出力電圧差	dVsup				0.05	V

(※1) 5Vモード、入力 計 0.6 μ A、Vadj=300mV

Ipsdn / (Ipsdf + Ipsdn): 0.25 と 0.50 時の出力電圧より計算 (備考 Vadjにより 入出力特性電圧は変化します)

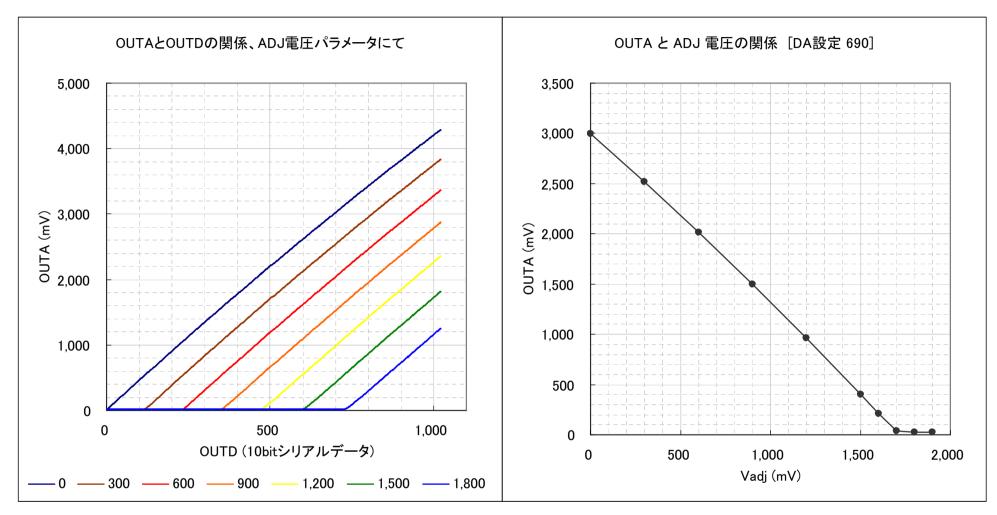
(※2) 5Vモード、入力 計 0.6 μ A、Vadj=300mV

Ipsdn / (Ipsdf + Ipsdn): 0.50 と 0.75 時の出力電圧より計算 (備考 Vadjにより 入出力特性電圧は変化します)

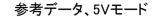

(※3) 5Vモード、入力 計 0.6 µ A

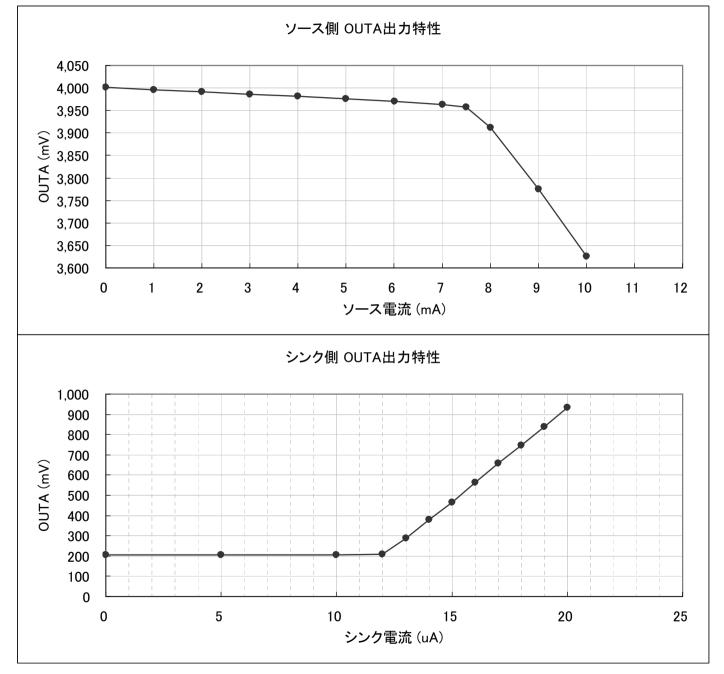
Ipsdn / (Ipsdf + Ipsdn): 0.50 で Vadj=0mV と 300mV 時の出力電圧のシフト量 / ADJ電圧差 を 計算する

(※4) 5Vモード、入力 計 0.6 μ A

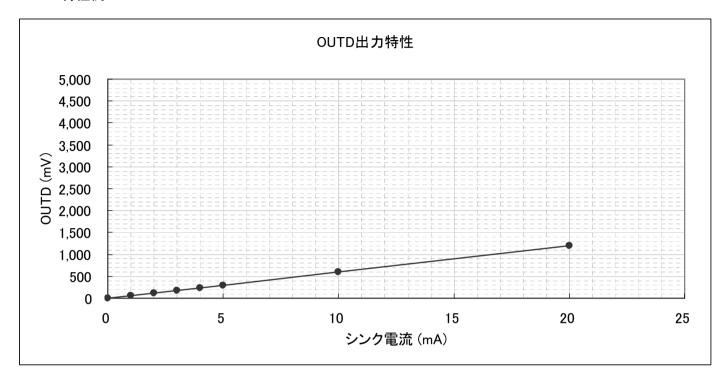

Ipsdn / (Ipsdf + Ipsdn): 0.50 で Vadj=500mV と 1,100mV 時の出力電圧のシフト量 / ADJ電圧差 を 計算する

入出力特性例




参考データ、32回発光時、5Vモード、Vadj=0V

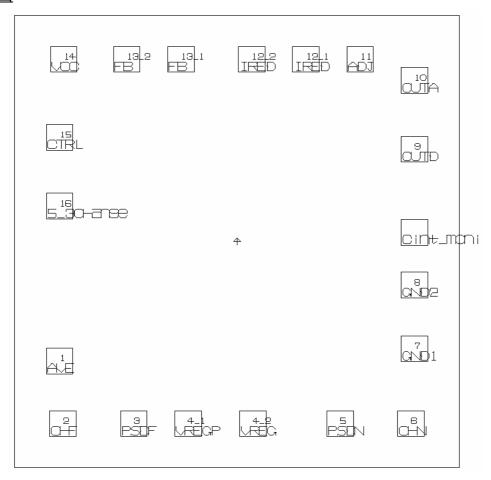
ADJ 関連について



参考データ、32回発光時、5Vモード

OUTD特性例

参考データ ESD保護のため 出力に 50Ω抵抗が入ってます

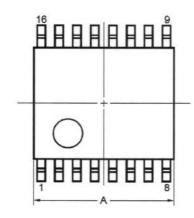

SRX106 PAD座標図

2014/4/16

座標原点	チップセンター	チップサイズ	X=1610um Y=1680um

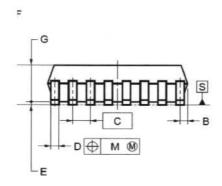
* チップサイズはスクライブ幅片側=50umを含んだサイズ

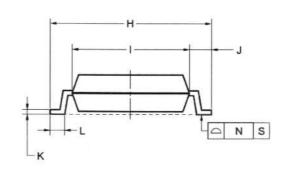
PAD配置図


PADの座標(PADセンターの座標)

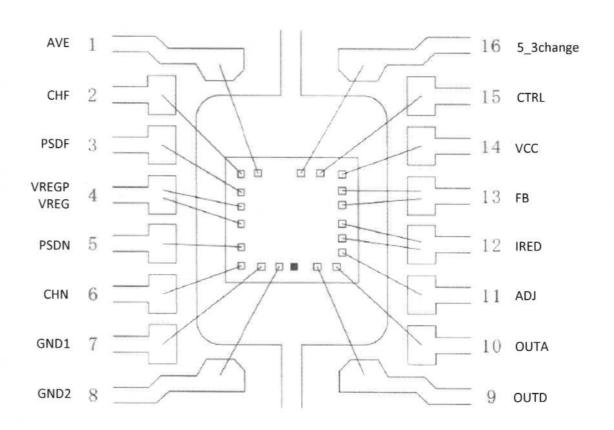
		<u> </u>					
	PAD名	X座標	Y座標		PAD名	X座標	Y座標
1	AVE	-601.7	-417.7	9	OUTD	601.7	322.4
2	CHF	-590.3	-636.7	10	OUTA	601.7	562.5
3	PSDF	-350.2	-636.7	11	ADJ	417.7	636.7
4_1	VREGP	-166.2	-636.7	12_1	IRED	233.7	636.7
4_2	VREG	54.3	-636.7	12_2	IRED	49.7	636.7
5	PSDN	350.2	-636.7	13_1	FB	-190.4	636.7
6	CHN	590.3	-636.7	13_2	FB	-374.4	636.7
7	GND1·AFGND	601.7	-374.5	14	VCC	-587.7	636.7
8	GND2·DGND	601.7	-152.3	15	CTRL	-601.7	363.7
	Cint_moni	601.7	31.7	16	5_3change	-601.7	123.6

【単位∶um】

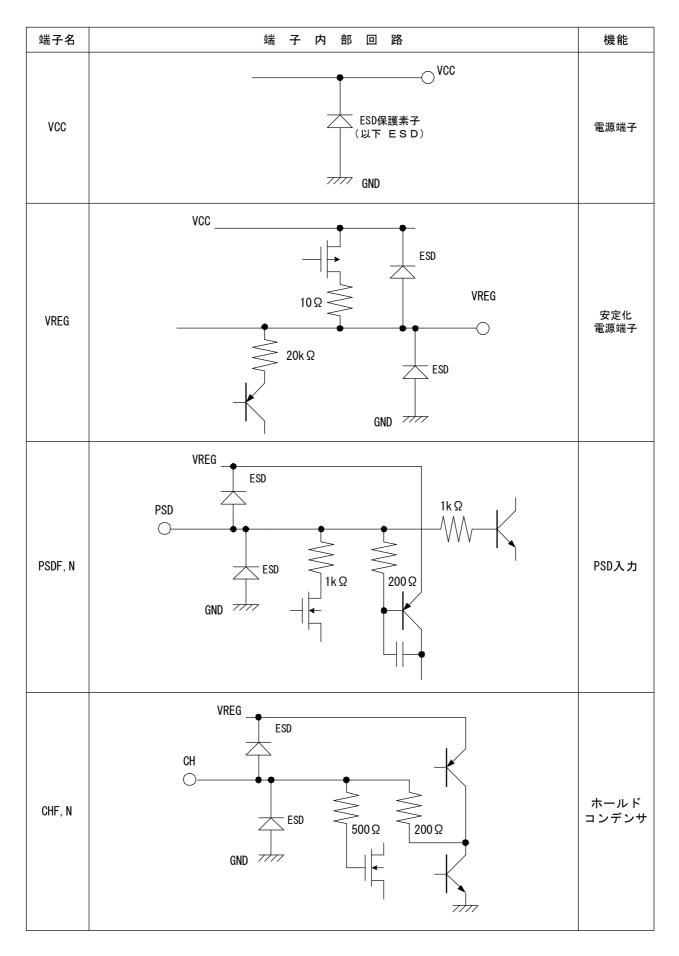

6/12


■ 16ピンSSOP_225mil 製品外形図

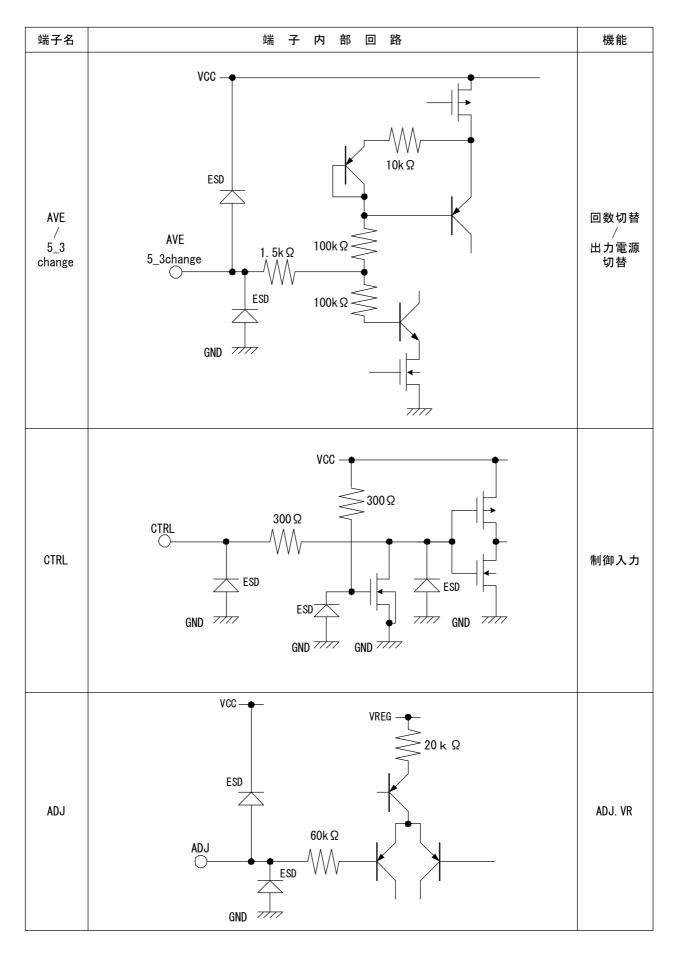
detail of lead end

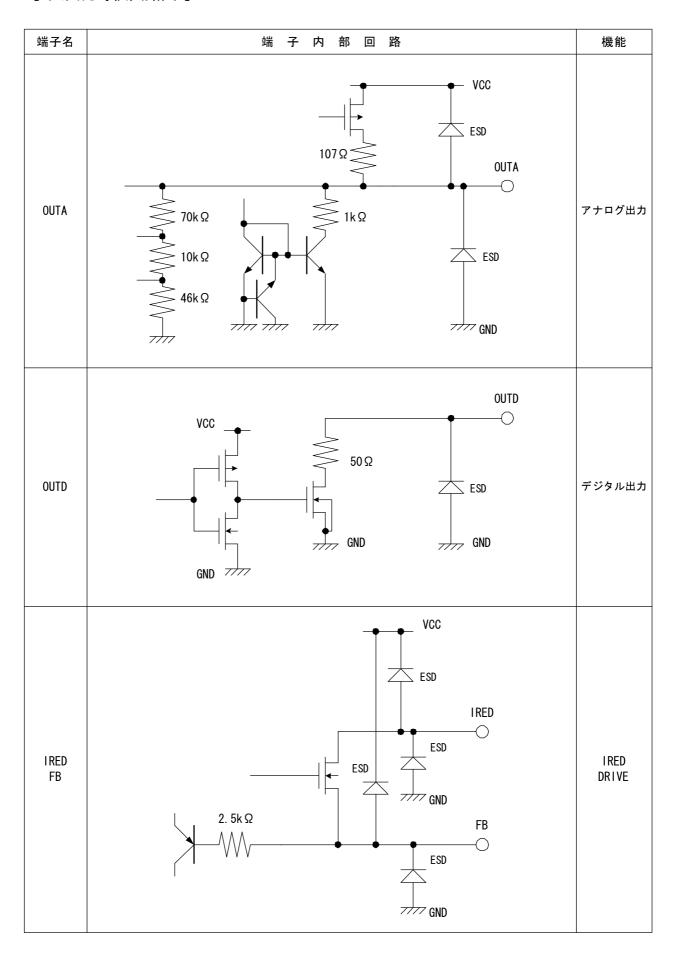

NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

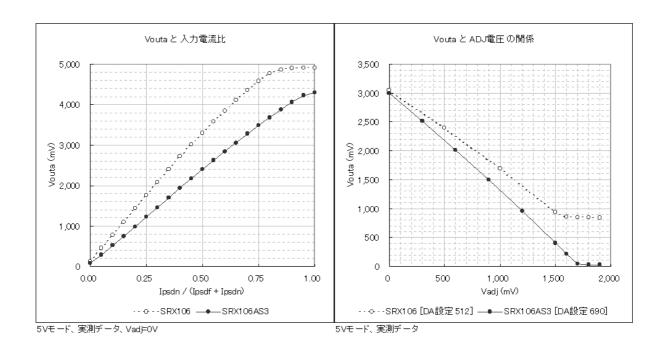

ITEM	MILLIMETERS
Α	5.2±0.3
В	0.475 MAX.
С	0.65 (T.P.)
D	0.22±0.08
E	0.125±0.075
F	1.565±0.235
G	1.44
Н	6.2±0.3
1	4.4±0.2
J	0.9±0.2
К	0.17+0.08
L	0.5±0.2
М	0.10
N	0.10
Р	5°±5°

NSP -	- S -	- 062 -	- 01	7/12


組立図


[入出力等価回路図]

[入出力等価回路図]



[入出力等価回路図]

[SRX106 → SRX106AS3 への変更点]

・アナログ出力 OUTA端子電圧 と PSD比位置、アジャスト端子ADJ電圧 との関係を変更した。

・デジタル出力 OUTD端子(1bit出力時)

弁別値を 1,550mV付近 \rightarrow 1,200mV付近、 ヒステリシス幅を 90mV付近 \rightarrow 40mV付近 に変更した。

かつ 論理を反転させて → [遠結果でL出力、近結果でH出力] にした。

[追記]

・裏面研磨、ダイシング関連

ウェハサイズ 8インチ

チップサイズ X: 1,610um、Y: 1,680um

チップ厚260umスクライブライン幅100umパッドサイズ90um角

•信頼性

ESD

MIL 2,000V、100pF、1.5k Ω マシンモデル 200V、200pF、0 Ω